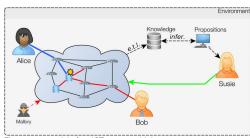
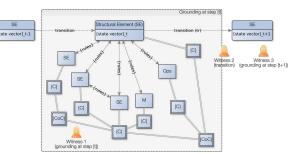
NORIA


machine learNing, Ontology and Reasoning for the Identification of Anomalies

Infrastructure impairments and cyber security issues are hard to detect on large Information and Communication Technology (ICT) systems

- Events are distributed over time and locations cascading failures, requests for changes, stealthy attack campaigns
- High volume of heterogeneous data logs, alarms, measures, reports
- Partially observable states dropped alarms, absence of metrology, non cross-referenced data


Elementary model of an ICT system with its actors

A failure on an asset induces events and alarms on the asset's neighbourhood. Susie, a network/security administrator, needs to distinguish primary events from secondary events. These events and alarms should also be contextualized w.r.t. « in policy » or « out of policy » activities

How can we efficiently detect anomalies and provide explainable Root Cause Analysis (RCA)?

- Solving data heterogeneity issues w.r.t. efficient data representation and mining techniques?
- Al architectures for causal rules inference and exploitation on temporal and structural data?

ICT systems seen through a hybrid « concrete-conceptual » model Assets' states dynamically vary w.r.t. other assets and actors based on behavioral rules. Sets of states are interpreted through higher level (composite) concepts. Predicting a next set of states/concepts is a sequential & uncertain decision problem. States and transitions are two different ways of representing the system's dynamics.

Anomaly Detection (AD)
Rule-based systems, machine learning

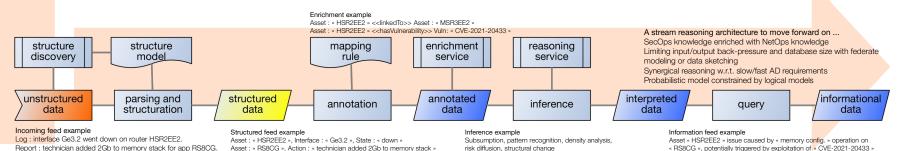
Knowledge Representation (KR)

Knowledge graphs, semantic graphs

CompleXity (CX)

Stream reasoning, data sketching

eXPlainability (XP)


Subsumption, graph neural networks, neuro-symbolic computing

State of the Art (SotA) observables	Exploration space impact			
	KR	сх	AD	XP
Classical control-loop model do not scale.		Х		
Infrastructure technical- behavioral-operational characteristics embed implicit or explicit logical systems.	х			х
NetOps and SecOps share operational and functional characteristics.		Х	Х	
Available AD techniques are mostly « narrow AI ».		Х	Х	
Graph representation (un)directly applicable.	Х		Х	
« good » KR means common sense and efficient data handling.	Х	Х		
Discourse domain can be covered by a combination of existing taxonomies, thesaurus and ontologies.	х	Х		

Observables influence research axis in an intricate way
The 4 research axis will take advantage of potential findings on these
observables.

Functional capabilities for NetOps/SecOps analyst Learn understandable model of system behavior Map time-location events to potential deleterious system states Contextualize (sequence of) events w.r.t. operational process Reduce root cause search space in near-real-time over events

Lionel TAILHARDAT (Orange INNOV) Yoan CHABOT (Orange INNOV) Raphaël TRONCY (EURECOM)

Sept. 2021