TÉLÉCOMMUNICATIONS SPATIALES ET ESPACE LOINTAIN

CARACTÉRISTIQUES, PERFORMANCES, PERSPECTIVES

Lionel TAILHARDAT
ELE124 – MINIEXP 2015

Vue d'ensemble

- Description du sujet
 - Contexte, Attendus & Enjeux
- Caractéristiques
 - Affaiblissement, Modélisation, Standardisation
- Performances
 - Etat de l'art, Radiosciences
- Perspectives
 - Axes d'amélioration & Domaines de recherche
- Conclusion

Description du sujet Contexte

Des missions à caractère scientifique : Exploration planétaire & Radiosciences.

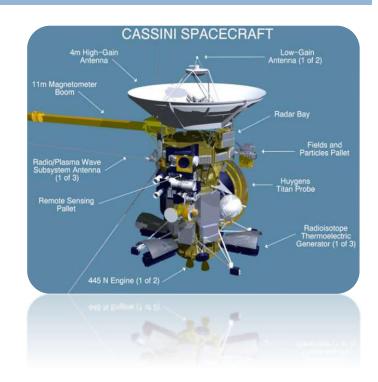
Un environnement technico-économique en progression permanente :

- Agences spatiales (ESA, NASA, JAXA),
- Organismes de standardisation (UIT, CCSDS, UAI),
- De l'analogique aux FPGA : des bps aux Mbps en 20 ans.

Des objectifs sur la fiabilité des transmissions et l'efficience des systèmes.

Des besoins tirés par les débits et la portée :

- Les attendus en Télécommande = 500 bps min., en Télémétrie = 1 Mbps min.,
- Ceinture de Kuiper : \sim 45 UA (affaiblissement e.l. = \sim -287 dB @ bande X).

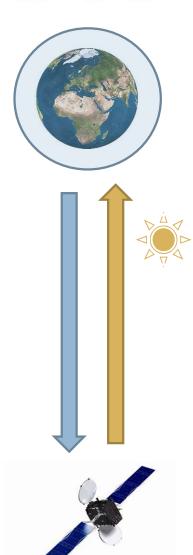

Un milieu physique complexe :

- Système perpétuellement en mouvement,
- Délai de propagation : ~5h Terre → Pluton,
- Diffraction et déconvergence atmosphérique, latence induite par le plasma interstellaire et l'activité solaire,
- Bruit thermique, rayons cosmiques,
- Effets relativistes, déflection et lentilles gravitationnelles.

Description du sujet

Enjeux & objectifs principaux (télécom.)

- Augmenter la largeur de bande pour des débits plus élevés (données scientifiques HD; liaison A/V pour des missions habitées),
- Améliorer l'efficacité des systèmes pour des communications sur de plus longues distances,
- Améliorer l'efficience des systèmes pour des missions de plus longue durée,
- Standardiser pour l'interopérabilité et la réduction des coûts.


5

Facteurs de performance

Modèle de Friis

 $P_R = P_T L_T G_T L_{TP} L_S L_A L_P L_{RP} G_R L_R$

Variable	Description	Sous-variables principales
P_R	Puissance reçue à l'entrée du récepteur ou du préamplificateur	Rendement
P_{T}	Puissance en sortie d'antenne à l'émission	Impédance
L _T	Perte de câblage à l'émission	Impédance caractéristique Longueur
G_{T}	Gain de l'antenne d'émission	λ , Ouverture d'antenne Facteur d'efficacité d'antenne
L_TP	Perte à l'émission due au pointage	Alignement Az-El réciproque
L _s	Perte sur le segment spatial	Longueur d'onde Distance
L_A	Atténuation atmosphérique	Coefficient d'absorption
L _P	Perte de polarisation	Alignement des plans E Réflexions
L_RP	Perte de pointage à la réception	Alignement Az-El réciproque
G_R	Gain d'antenne à la réception	λ , Ouverture d'antenne Facteur d'efficacité d'antenne
L_R	Perte de câblage à la réception	Impédance

... des variables identifiées, mais dont il faut gérer tous les cas de figure.

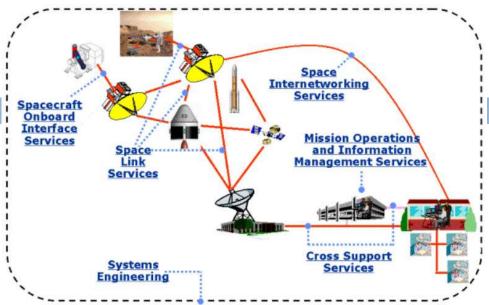
Modélisation des missions Du 'worst case' au 'Design Control Table'

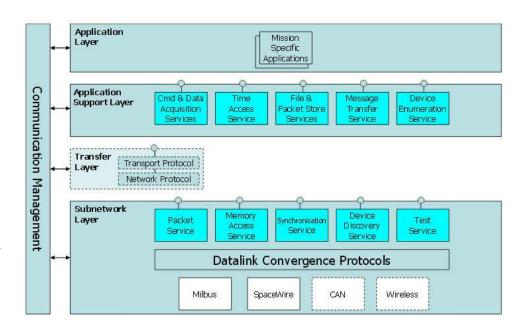
- Worst Case :
 - Déterminisme intéressant
 - Pas de gestion de projet optimale
- Design Control Table :

$$y = y_1 y_2 ... y_k$$
 $x_i = 10 \log_{10} y_i$, $i = 1, 2, ..., K$ $x = x_1 + x_2 ... x_k$

- Démarche exploratoire / effets de la météo (prépondérant en bandes X et supérieures)
- Technique du percentile météo (première approximation)
 - 1. Condition en temps sec et ciel clair
 - 2. x-percentile du temps la dégradation due à la météo est moins défavorable que prévue
 - 3. (100 -x) du temps la dégradation est pire
- Calcul des marges, moyennes et niveau de confiance (unités en dB)
 - Design value
 - Tolérance optimiste
 - Tolérance pessimiste
- Exigence: $\overline{SNR} \ge (SNR_{attendy} + n\sigma)$

Performance(s)

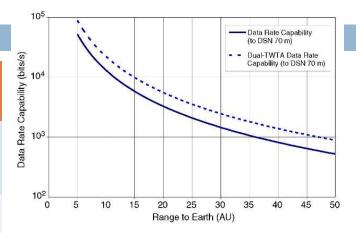

De la nécessité des normes

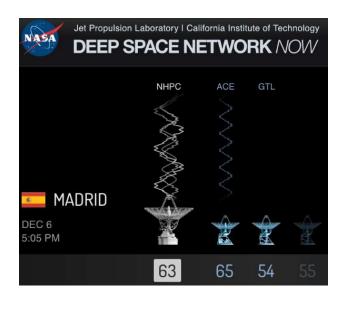

Effets

- Performances (p.e. mise en commun d'antennes d'agences différentes),
- Dynamisme de la recherche,
- Tendance à la hausse du volume des Données scientifiques : Centres de calcul Traitement de données massives,
- Coûts de développement & Coûts de structure,
- Sécurité des systèmes : piratage et sabotage (hypothèse de dev. commercial ou de propriété des données).

Hypothèses clés

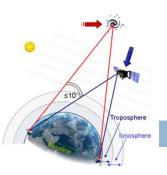
- Mise en réseau des stations,
- Architecture standardisée de plateforme,
- Protocoles paquet avec encapsulation,
- Compatibilité DVB-ETSI.




Performances

A quoi s'attendre aujourd'hui?

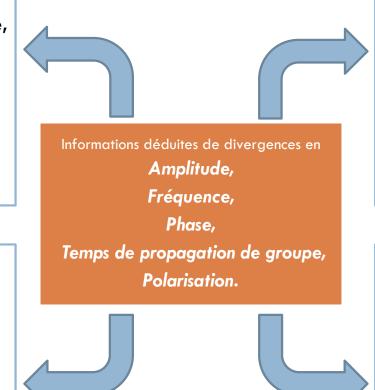
Caractéristique	New Horizons (2006) NASA – Pluton	Cassini (1997) NASA – Saturne
Canal & Modulation	- BPSK Polar. : LHC + RHC	NRZ-L Bi-phase-L BPSK -
Télémétrie	Turbo code , norme CCSDS R = 1/6	Reed Solomon (255,223) 2 maximum-likelihood convolutional Viterbi decoders (7,1/2) & (15, 1/6)
Ø antenne sonde Ø antenne Terre	2,1 m 63 m	4 m Cassegrain, 2 réflect. 34 m
RTT Light Time	9,69 h @ 5,23.10⁹ km	2,78 h @ 1,5.10° km est.
Data rate (U/L)	n.a. kbps 7,18 GHz P _T : 114 dBm est. P _R : -107 dBm est.	0,5 kbps [8; 12] GHz est. P _T : 111 dBm est. P _R : -118 dBm est.
Data rate (D/L)	2,810 kbps 8,44 GHz P _T : 2 x 40 dBm est. P _R : -141,46 dBm	0,014 kbps [8; 12] GHz est. P _T : 88 dBm est. P _R : -153,65 dBm est.



Spec. NHPC / DSN 70 m.

Radiosciences

Quels gains pour la science ?



Densité électronique (ionosphère, couronne solaire, espace interplanétaire)

- Vitesse de propagation (2 fréquences) sachant la distance du vaisseau : densité électronique sur la ligne de mire,
- Fréquence Doppler (2 fréquences) en phase d'occultation : densité électronique de l'atmosphère.

Pression, température et composition de l'atmosphère de corps célestes

- Variation de fréquence en phase d'occultation : angle de réfraction de l'amosphère,
- Index de réfraction en fonction de la hauteur : température et pression relative,
- Intensité : présence de vapeurs ou de condensats.

Relativité générale

- Déflection de l'onde : Champ de gravité, Observation d'objets distants,
- Décalage vers le rouge des oscillateurs : Champ de gravité,
- Variation de l'impulsion sur la fréquence Doppler aller-retour : Ondes gravitationnelles

Masse et champs de gravité des corps célestes

- Doppler, ranging, VLBI: changement d'attitude du vaisseau / masse du corps,
- De la Masse du corps : Composition chimique à priori / classe de planète

Perspectives

Axes d'amélioration et domaines de recherche

Electronique et technologies de l'information :

- Liaisons: de la RF au laser pour une plus grande largeur de bande (attention au pointage)
- **Bruit**: Supraconductivité, Stations spatiales de relais, Transformée de Karhunen-Loeve,
- **Sensibilité**: Antennes en réseau, Stabilité des O.L.,
- □ Codage de canal : du BCH au LDPC,
- **Synchronisation**: algorithmes de filtrage adaptatif pour maintenir la synchro en cas de C/N faible,
- Protocoles d'échange: Store & Forward multipoints, Licklider Transmission Protocol (hop-by-hop), SCPS-TP (end-to-end), Bundle-Protocol.

Technologies informatiques:

- Intelligence Artificielle: autogestion de l'engin en situation d'urgence ou de liaison faible avec le centre de contrôle, améliore l'efficience énergétique,
- Model-Checking et Techniques de programmation : amélioration de la sureté de fonctionnement,
- Logiciels de prédiction : anticipation des risques et des opérations nécessaires.

Procédures

- Allocation des bandes : bien répartir les missions pour ne pas partager les même ressources radio,
- Réallocation des **ressources des plateformes** : éteindre un élément pour allouer temporairement plus d'énergie à une transmission.

... une recherche dynamique tendant à l'automatisation et l'extension des missions.

Conclusion

- Des sources d'erreur multiples impactent négativement la capacité du canal
- Des variations de performance apportent une connaissance du milieu
- Des solutions
 opérationnelles
 s'ajoutent aux solutions
 technologiques

Pluton,

Observation du 14 Juillet 2015 par la sonde New Horizons.

Résolution : [75; 85] m / pixel

Poids : ~2 Mbit compr. / image

Délai trans. : ~42'